Industrial 5G Devices – Architecture and Capabilities

5G enables reliable, low-latency, high-bandwidth data transmission, making it a key technology for the future of industrial communications. The introduction of 5G to factories and a wide range of other industrial facilities is also creating a need for industrial devices that support the 5G standard.


Executive Summary

This white paper provides an overview of the kinds of devices that can be needed in order for 5G to benefit the manufacturing industry and related sectors. As 5G systems are implemented in factories and other settings, attention is increasingly shifting to designing devices that will let them work on the shop floor. A whole new generation of 5G-compatible devices is now being developed. This paper provides an introduction and practical guide to this field for everyone who is directly or indirectly involved in it, whether they are academics, manufacturers, factory owners or operators, designers, or engineers. Its main purpose is to provide an easy-to-read overview of the various categories of devices and solutions that are now appearing, while going into greater technical detail on key technical topics and design issues.

The main types of 5G devices are presented and described and a number of real-world examples discussed while describing the most important technical issues, challenges, and solutions involved in each case. On a more theoretical level, reference architectures are then presented for the most common types of industrial 5G devices, including generic block diagrams.


Finally, various aspects of the physical architecture of such devices are discussed, covering challenges such as explosion protection, storage of credentials, the pros and cons of chipset versus module solutions, radio module form factor standards, a comparison of standalone and integrated application processors, and implementation of interfaces.

Key messages

Insight and Vision

The design of industrial 5G devices requires skills from several different engineering disciplines. Some aspects which influence the design choices include:

  • Reliable communications
  • Low latency
  • High throughput
  • Time synchronization
  • Accurate positioning
  • Protection from rain, dust, and other environmental influences in industrial settings
  • Electromagnetic compatibility to avoid adverse interactions with other equipment and ensure safety
  • Prevention of explosions in hazardous areas
  • Battery-powered operation and low power consumption

When designing industrial 5G devices, it is essential to take these and many other aspects into account.

As shown in the figure above, an industrial 5G device has a 5G radio interface for communicating with local peripherals or a local network. The local peripherals are typically sensors and actuators, while the local network will typically be industrial Ethernet or fieldbus.

From a logical perspective, an industrial 5G device comprises a 5G network termination, a local network termination, and application functionality. It also includes configuration and management functions (not shown in the figure above).

In physical terms, an industrial 5G device generally comprises a radio module and an application processor as shown above. There are multiple options for designing the physical interface between the application processor and radio module. Which is most appropriate in a given case depends on data throughput, latency, and time synchronization requirements.

There are also other options for designing the physical architecture. One is to use individual chips instead of a radio module. Although this approach has some advantages, it typically requires a greater development and certification effort. Another is to integrate the application processor in the radio module. Although this reduces the number of components, fewer development environments are available than for a standalone application processor.


Retrospect and Outlook

In this white paper, we have discussed the architectural choices for industrial 5G devices. They depend on several criteria, including:

  • The type of industrial 5G device
  • Authentication based on USIM or EAP and how the credentials are stored in the industrial 5G device
  • The latency, throughput, and time synchronization needed for the industrial 5G device
  • The environmental characteristics of the industrial 5G device. This includes protection from water, dust, vibration, and extreme temperatures as well as classification for operation in hazardous areas.
  • Power characteristics and whether the industrial 5G device will be battery-powered or plugged into the grid

In the white paper, we introduce a new functional entity called an EAP identity function (EIF). The EIF holds the credentials needed for EAP authentication plus other relevant information that is otherwise stored in the USIM.

The white paper also addresses the use of the GSMA standardized remote SIM provisioning (RSP) standard. From a technical perspective, the remote SIM provisioning standards may meet the need for provisioning operator credentials in a private network setting. However, the ecosystem for the remote SIM provisioning standards has been optimized for public operators. It would be beneficial to adopt the remote SIM provisioning ecosystem to also meet the needs of private networks.

We have awoken your interest?

Do you want to learn more about this future-oriented topic? Please download or share the 5G-ACIA white paper as a PDF file.

Relevant white papers

Industrial 5G Devices – Architecture and Capabilities
5G enables reliable, low-latency, high-bandwidth data transmission, making it a key technology for the future of industrial communications. The introduction of 5G to factories and a wide range of other industrial facilities is also creating a need for industrial devices that support the 5G standard....
abstracted constructor with tablet in his hand
5G QoS for Industrial Automation
Distributed industrial applications rely on the quality of service (QoS) of the underlying communications system, which has to meet the application requirements in each case. Some industrial use cases pose highly demanding communication requirements and are therefore quite sensitive to any changes in the QoS. 5G supports comprehensive mechanisms for defining, implementing, controlling, policing, and monitoring QoS. These mechanisms cover both dynamic QoS management for packet-level traffic differentiation within a single-device connection and management of the overall performance of 5G networks. This white paper addresses industrial automation professionals wishing to leverage 5G QoS features in their applications....
abstracted roboter arm touches computer screen which shows some drones
5G for Industrial Internet of Things (IIoT): Capabilities, Features, and Potential
It’s important to understand how well a wireless communications system such as 5G can be expected to perform its intended use. The technical methods and criteria applied to assess this are native to the wireless industry and may strike those who approach 5G from the end user perspective as foreign or opaque. To help the entire industrial IoT community understand this technology better, speak a common language, and assess whether 5G is the best choice for meeting a particular requirement, this whitepaper describes its capabilities and performance for a defined set of technical criteria....

Designing 5G for Industrial Use

Key 5G capabilities pave the way for perfecting Industry 4.0 communication and IIoT connectivity

Key Enabler for Industrial 5G

High-performance features of 5G enhance its potential for a wide variety of industrial communication channels and applications

Making Industrial 5G happen

For core use cases, industrial 5G will evolve into a key wireless communication technology and standard

Usage of industrial 5G

A wide variety of white papers explain in detail how industrial 5G will migrate to and be integrated in connected industries and automation

Endorsed testbeds

The capabilities and performance of 5G in actual industrial applications are evaluated and validated with endorsed testbeds


Industrial 5G demos for various industry scenarios and resolutions are presented, showing how they maximize performance and reliability 

About us

5G-ACIA unites key stakeholders for advancing the standardization and regulation of 5G in the industrial domain


5G-ACIA ensures that the special interests and needs of the industrial domain are adequately considered in connection with 5G standardization and regulation


5G-ACIA is run and operated by a board, working groups, and an office

Working groups

A plenum makes plans and decisions on how to handle different work items and essential topics

Legal entity of 5G-ACIA

5G-ACIA is a working group of ZVEI

Global partners

5G-ACIA is a global association and central forum with associated partners worldwide


Joining 5G-ACIA makes you an Industrial 5G initiator with access to valuable insights and knowledge


Global member organizations from diverse domains are the key to the success of 5G-ACIA and Industrial 5G

How to become a member

5G-ACIA is happy to receive and answer your queries

Self-Service Registration

Register a new representative for an existing Membership


All of the latest announcements, reports, and information are available here

Press releases

All recent press releases are available here


Join upcoming events and review past ones


Read the latest blog posts here


Key 5G-ACIA messages and publications for SDOs and observers worldwide


Join 5G-ACIA and learn about its work designing the framework for industrial 5G


Media and materials to inspire you and promote Industrial 5G


Industrial 5G Demos and resolutions are explained under different industrial scenarios by providing highest levels of performance and reliability

Share the content